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ABSTRACT 

Vortex interaction with a thick e l l ip t ica l  leading-edge a t  zero 

relative offset  produces a pronounced secondary vortex of  opposite 

sense that travels w i t h  the same phase speed as the primary vortex 

along the laver surface of the edge. For the range of parameters 

examined, th i s  primary-secondary vortex combination , once formed, 

does no t  move away from the surface. In contrast t o  the case of a 

t h i n  leading-edge, there i s  no "sweeping" o f  flow about  the t i p  of 

the edge d u r i n g  the formation of the secondary vortex. 

The edge thickness (scale) relative t o  the incident vorticity 

f ie ld  has a strong effect  on the distortion of the incident primary 

vortex during the impi ngernent process. 

i s  sufficiently small, there i s  a definite "severing" of the incident 

vortex and the portion of the incident vortex t h a t  travels along the 

upper part of  the e l l ip t ica l  surface has a considerably larger phase 

speed than t h a t  along the lower surface; this suggests t h a t  the i n t e -  

gra ted  loading along the upper surface i s  mare strongly correlated. 

When the thi ckness (scale) 

When the thickness (scale) becomes too  large, then most, i f  n o t  a1 

o f  the incident vortex passes below the leading-edge. The edge t h  

ness (scale) ,  however, does not  have any significant effect  on the 

secondary vortex formati on process. 

On the other hand, the relative transverse offset  of the edge 

Y 

ck- 

w i t h  respect t o  the center of the incident vortex has a significant 

effect  on the secondary vortex formation. A t  zero offset ,  the vortex 
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impinges d i  rect ly  a1 ong the center1 i ne of the edge , whi 1 e posi ti ve 

and negative offsets of the edge produce vortex trajectories below 

and above the centerline. The secondary vortex i s  most pronounced 

for  the zero offset  case and i s  less so fo r  the positive offset  

case; the secondary vortex for  this positive offset  case breaks 

apart following i ts  formation. The negative offset  case, however, 

does not produce any secondary vortex on ei ther  the upper or  lower 

surfaces of the leading-edge. Due to the large thickness of the 

edge, the incident vortex passes along ei ther  the upper or lower 

surface of the edge, and no "severing" of the vortex occurs. This 

physics of the flow i s  directly reflected i n  the pressure amplitude 

and phase measurements. Along the surface where the distorted 

primary vortex and the secondary vortex ( i f  any) travel , there i s  

a propagating pressure wave. 

where there i s  no primary vortex, there occurs a relatively constant 

phase, corresponding to  no wave-like motion. 

propagating wave also changes for  the various of fse t  cases; the 

wavelength of vortex-induced pressure f ie ld ,  corresponding to  the 

negative offset  case, i s  approximately twice that  of zero and 

positive offset  cases. 

However, on that  portion of the surface 

The wavelength of the 
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INTRODUCTION 

There i s  a s t rong  need for  a deeper understanding o f  the 

interacti  on of unsteady vorti c i ty  fie1 ds wi t h  sol i  d boundaries of 

various geometries. The interaction process results in structural 

loading and noise generation in a number of applications: 

edges of airplane wings,  propeller blades, turbine guide vanes, 

cavities i n  submarine and ship hulls,  bridge decks and turbulence 

attenuators (Naudascher and Rockwell 1980). 

leading- 

The unsteady vorticity f ie lds  are basically inherent t o  a l l  

unstable shear layers. 

layer, planar j e t ,  axisymmetric j e t  and planar wake), the growth 

of the i n i t i a l l y  unstable disturbance t h a t  leads t o  eventual forma- 

tion of a concentration of vorticity,  i.e. "vortex", i s  qualita- 

tively similar. Firs t ,  imediately downstream of the separation, 

smal 1 vorti ci t y  perturbati ons are rapi dly amp1 i f i  ed i n a '7 i nea rl' 

g rowth  region. The wave propagation velocity, rate o f  amplification, 

and amplitude of  the pressure fluctuation, can be predicted in 

In a l l  shear layer configurations (mixing 

th i s  region by applying linearized s t ab i l i t y  theory (Freymuth 1966, 

Michalke ,1965). Of course, th i s  "linear" region o f  growth i s  

no t  l inear  a t  a l l  b u t  rather shows an exponential growth;  i f  semi- 

logarithmic coordinates are used, then the disturbance i s  said t o  

amplify "linearly" i n  the streamwise direction. 

when the disturbance amplitude reaches the value of ten percent 

or so of the free-stream velocity U ,  i t  undergoes distortion in the 

Further downstream, 
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nonlinear growth region eventually concentrating i n t o  organized 

vortical -1 i ke structures. During this evolution process the 

spectral content of the shear layer changes from distributed 

vorticity of a single predominant frequency t o  concentrated 

vorticity having several discrete frequencies and eventually forms 

mu1 t ip le  concentrations ov vorticity having broader frequency content. 

Beyond this region, the spectral broadening process eventually leads 

t o  ful ly  three-dimensional turbulent flow (Miksad 1972, Sat0 and Kuri k i  

1961). Hence there is  a wide range of unsteady shear flows w i t h  

varying coherence, from well-defined single, concentrated vortices 

t o  fully turbulent flow. Bushnell (1984) extensively reviews various 

categories of these flows and discusses the i r  interaction w i t h  

surfa,ces having sharp and b l u n t  leading-edges. 

and Rockwell (1983, 1984) also review recent experimental and 

theoretical simulations o f  coherent vortex-leading edge interactions. 

Booth and Yu (1984) 

Various studies have been carried o u t  recently, covering a wide 

range of interactions of unsteady distributed and concentrated 

vorticity f ie lds  with leading-edges such as: 

a single frequency, concentrated vorticity a t  a single frequency, 

concentrated vorticity a t  mu1 t ip le  frequencies 

streamwise vorticity. 

distributed vorticity a t  

and concentrated 

Distributed vorticity a t  a single frequency. As mentioned 

previously, distributed vorticity can be defined as an unsteady shear 
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flow whose vorticity has not  y e t  agglomerated intoacoherent concen- 

tration of vorticity.  This type of vorticity f ie ld  provides a sim- 

ple case for examining the basic features of leading-edge interac- 

t ion .  Kaykayoglu and Rockwell (1985) employed the configuration 

of a planar j e t ,  oscil lating in i t s  sinuous mode,to generate a dis- 

tributed vorticity field. 

and wake regions w i t h  ill-defined near fields due t o  presence of a 

s p l i t t e r  plate,produces a distributed vorticity f i e ld  which i s  in 

good agreement with l inear s tab i l i ty  theory. 

t ively small amplitude disturbance in a shear layer incident upon 

the edge, rollup of the incident shear layer into a concentration 

of vorticity can be avoided. 

edge, the interaction process between the upstream distributed vor- 

t i c i t y  f ie ld  and the sol id  surface causes rapid amplification and 

subsequent vortex formation. 

edge was used t o  study the interact on process. 

tion showed details  of formation of primary and secondary vortices 

near the t i p  of the leading-edge Even t h o u g h ,  as mentioned 

ea r l i e r ,  incident vortices were not present in the j e t  shear layer 

upstream of the edge, transverse oscillation of the j e t  allowed 

the i r  rapid formation near and downstream of the t i p  of the leading edge. 

The growth of the primary vortex gives r ise  t o  an instantaneous 

adverse pressure gradient near the t i p  region. 

causes flow separation from the surface of the edge and subsequent 

The oscil lating j e t ,  unlike mixing layers 

By generating a rela- 

In the flow region near the leading 

A semi-infini te length t h i n  leading- 

Extensive visualiza- 

The pressure gradient 
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formation o f  the secondary vortex. Using an experimental technique 

which will be discussed i n  detail i n  a subsequent chapter, Kaykayoglu 

and Rockwell (1985) reconstructed the instantaneous pressure f ie lds  

along the surface of the edge, 

took on i t s  maximum negative value, downstream o f  the t i p  o f  the 

edge a t  the p o i n t  of the separation. 

surface of the edge showed very small streamwise phase variation 

near the t i p  even though  the visualization showed t h a t  the primary 

vortex past the edge has a very well-defined phase speed and wave- 

length. 

face pressure f i e ld  i s  nonpropagating, in contrast t o  the propagating 

wave associated w i t h  the primary vortex formation. 

streamwise va r i a t ion  of the pressure phase i n  the t i p  region thus 

provides highly correlated pressure fluctuations and  large force ampl i -  

tude. 

revealed t h a t  the onset o f  flow separation imedi ately downstream 

of the t i p  produced the highest fluctuation amplitude, t h o u g h  the 

amplitude associated with the primary-secondary vortex p a i r  down- 

stream remained substantial. 

This revealed t h a t  the pressure 

The pressure f ie ld  along the 

Hence, in the region of  greatest flow distortion, the sur- 

This negligible 

Flow visualization and  simultaneous pressure measurement 

Concentrated vorticity a t  a single frequency. Unlike a planar 

j e t  o r  wake, a mixing-layer configuration w i t h  different velocities 

above and  below the s p l i t t e r  plate can produce a concentrated single 

row of vorticies w i t h  l ike sense o f  circulation. The nature and  

the strength of  such vortices depends on the r a t i o  of the higher t o  
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lower flow speed as well as on the distance from the onset o f  vor- 

tex formation. Various studies have been done on ntwo-dimensional" 

or transverse vortex interactions w i t h  a f l a t  wall and a corner/lead- 

i n g  edge as we1 1 as longitudinal vortex interaction with a plane 

wall and a w i n g  (Bushnell 1984). All the related references are 

l i s ted  i n  Bushnell's review and will no t  be covered here; only 

the research i n  the area of concentrated vorticity a t  a single fre- 

quency interacting w i t h  various bodies w i  11 be addressed. 

The vortex-corner impingement case was studied by Knisely and 

Rockwell (1979). They found t h a t  the interaction dynamics were very 

sensitive t o  the alignment between the corner and the vortex. 

the case where the corner and vortex were nearly aligned, "severing" 

of the vortex and generation of "counter vorticity" on the vertical 

wall occurred. They also f o u n d  t h a t  the feedback from the leading 

edge influenced the vortical structure upstream; the vortex diameter 

was increasedo 

I n  

An interesting study of an impulsively generated vortex pair ,  

interacting w i t h  a t h i n  f l a t  plate,  was done by Homa and Rockwell 

(1984). In the case o f  plate offset,where the outer layer o f  one 

of  the vortices of the vortex pair  impinged on a t h i n  f l a t  plate,  

there was flow separation leading t o  formation o f  a secondary 

vortex occurred. 

vortex pai  r travelled together upstream. 

Once generated, the primary and  secondary 

A t  the same time , there 
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occurred another type of secondary vortex formation, leading t o  a 

primary vortex-secondary vortex p a i r  which travel led down t o  the r i g h t  

of the impingement location. Similar t o  the previous case of distributed 

vortici ty-edge interaction, the secondary vortex formation plays a 

crucial role d u r i n g  the primary vortex-edge interaction process i n  

other configurations. Both Ziada and Rockwell (1982) and Kaykayoglu 

and Rockwell (1985, 1986a) studied the case of vortex-thin leading 

edge interaction. Ziada and Rockwell found t h a t ,  similar t o  the 

case of vortex-corner edge interaction, the alignment of the plate 

leading-edge and the vortex center had a strong influence on the 

interaction process. 

interaction w i t h  the leading-edge produced a secondary vortex of 

Within a range of offset ,  the primary vortex 
b 

opposite circulation on the lower surface of the leading-edge. 

The frequency of this shedding process coincided with the incident 

disturbance frequency. The strength and the scale of the secondary 

vortex was greater for  the case where the center of the incident 

vortex passed above the leading-edge. A more detailed visualization 

of the interaction process was performed by Kaykayoglu and Rockwell. 

A hydrogen bubble wire was mounted w i t h  one end i n  the surface of 

the leading-edge; corresponding formation of the secondary vortex, 

below the edge, was seen more clearly. 

of the flow from the top t o  the bottom surface. 

viscous layer about the t i p  was caused by a strong induced flow 

between the primary vortex and the t i p ;  this process directly led 

T h i s  showed a "sweeping" 

T h i s  sweeping of the 
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t o  the formation of a secondary vortex. 

measurements i n  the t i p  region revealed h i g h  pressure amplitude due 

t o  the migra t ion  of f luid from the upper t o  lower surface of the 

edge. 

rather t h a n  a m i n i m u m  occurring a t  the t i p ,  as i n  the case of 

distributed vorticity-edge interaction. On the lower surface of 

the leading-edge, the fluctuating pressure f ie ld  exhibited wavelike 

motion due t o  the convection of the secondary vortex ins tab i l i ty ;  

th i s  i s  shown by the increasing phase downstream of the t i p .  

contrast, along the upper surface, there was nearly constant phase 

of the pressure f ie ld  i n  the streamwise direction; th i s  led to  large 

local loading of the edge. 

Detailed pressure 

The interaction process led t o  maximum pressure amplitude, 

In 

Booth and Yu (1984) reveal several interesting features of vortex 

street-blade interaction. 

wake was altered as a function of blade position; also, the changes 

i n  blade loading were related t o  the vortex t ra jector ies .  

They showed t h a t  the structure of the 

Concentrated vort ic i ty  a t  multiple frequencies. In many 

practical si tuations,  the concentrated vort ic i ty  f ie ld  contains more 

t h a n  one concentration of vorticity w i t h  a number of discrete frequency 

components. 

w i t h  the edge, induces a modulated pressure wave w i t h  several 

spectral components along the surface of the edge. Kaykayoglu and 

Rockwell (1986b) investigated the case of a p l a n a r  j e t  undergoing 

transverse modulations. 

patterns of multiple vortex interaction i n  the vicinity of the 

edge. 

Such multiple concentrated vort ic i ty ,  upon interaction 

T h i s  flow f ie ld  generated remarkably ordered 

I n  one case, w i t h  increasing time, the small scale vortices 

passed beneath the large scale vortex along the lower surface of the 
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edge. When there was a f i n i t e  length scale between the upstream 

separation boundary a n d  the leading edge, remarkably repeatable 

patterns of incident vortices generated well-defined spectral 

components i n  the edge region. 

ations along the bottom surface o f  the edge showed t h a t  components 

~ / 3 ,  2 ~ / 3  and  

which the vortex formed i n  the j e t  shear layer, i .e. the most 

The spectra of the pressure fluctu- 

were predominant; B corresponds t o  the rate a t  

unstable frequency o f  the shear layer. 

the t i p  of the edge showed t h a t  the f i r s t  harmonics of these com- 

ponents were predominant. 

In contrast, spectra a t  

Hence, i n  the near t i p  region, the pre- 

dominant spectra components changed drastically as a function of 

streamwise distance. 

edge offset ,  relative t o  the incident shear layer, had strong 

effect  on the vortex interaction patterns. 

Much like the single frequency cases, the 

In the case of edge 

offset  where direct impingement of the shear layer vortices upon 

the edge occurred, the most unstable frequency of the shear layer 

dominated the low frequency components. 

Concentrated streamwise vorticity. In contrast t o  the previous 

case of the two-dimensional, transverse vorticity f ie ld ,  th i s  type 

o f  incident vorticity f ie ld  i s  predominantly oriented i n  the stream- 

wise direction. This orientation involves an inherently three- 

dimensional flow structure such asa w i n g  t i p  vortex. Interaction 

of a t i p  vortex w i t h  a i r fo i l s  has been studied by McAlister and  
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Tung (1984). They found that the mean angle of attack of a i r fo i l  

a strongly affects  the s t ab i l i t y  of  the vortex core following the 

impingement process. 

the impingement, o r  show an ins tab i l i ty  downstream of  the leading 

edge or even a t  the upstream portion of the a i r fo i l  ( a = 4 O ,  14" and  

-12" respectively). 

gradient from streamwi se vort ic i ty  upstream of the leadi ng-edge 

led t o  premature s t a l l  along the a i r f o i l ;  a larger  strength vor- 

tex closer t o  the surface caused s t a l l i ng  to occur closer to the 

leading edge, 

action,also emphasized the importance of spanwise pressure gradients 

induced by the t i p  vortex i n  causing laminar leadinp-edge separa- 

tion; this led t o  an  early s t a l l  or turbulent trailing-edge separ- 

a t i o n .  Pate1 a n d  Hancock (1974) found that the proximity, or o f f -  

s e t ,  of the t i p  vortex core w i t h  respect to  the leading edge had  

a strong e f fec t  on the onset of ins tab i l i ty  of the t i p  vortex i t s e l f  

as i t  interacted w i t h  the leading-edge of the blade o r  a i r f o i l .  

Far  away from the a i r fo i l  the t i p  vortex core passed by undisturbed, 

b u t  as i t s  trajectory moved forward t o  the stagnation region o f  

the a i r f o i l ,  i t  experienced onset o f  ins tab i l i ty  well upstream of 

the leading-edge interaction region. Kramer and Rockwell (1984) 

investigated the evolution of t i p  vortices and interactions w i t h  

t h i n  plates. Using three hydrogen bubble timelines located upstream 

of the leading-edge of the plate ,  a detailed visualization of the 

The vortex core may remain s tabi l ized d u r i n g  

In general, they found t h a t  the pressure 

Ham ( 1 9 7 4 ) , i n  his investigation of blade-vortex inter-  
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interaction process was done; upon interaction with the plate, the 

incident t i p  vortex was s p l i t  a t  an off-center location. Follow- 

i n g  the sp l i t t ing  process, the major share of the incident vortex 

was distorted and moved t o  the l e f t  side of the plate. 

secondary vortex formation could n o t  be seen clearly, the onset 

of i t s  formation was suggested by the strong curvature of the time- 

lines closest t o  the plate. 

plate, a thick layer of retarded f luid with no apparent concentra- 

tion of vorticity was formed. 

Even though  

Meanwhile, on the r i g h t  side of the 

Overview and Proposed Research. In a l l  the previous studies 

of coherent vorticity field-edge interactions, many common fea- 

tures can be found: an unsteady separation process and subsequent 

secondary vortex formation; a relation between the instantaneous 

pressure fie1 d and  the nature of secondary vortex generation; and depen- 

dence of the interaction mechanism on the offset  between the inci- 

dent shear layer a t  the body. 

This investigation will study the case of a concentrated vor- 

t i c i t y  f ie ld  a t  a single frequency, interacting with a f i n i t e  

thickness leading-edge. The concept of the investigation w i l l  be 

similar t o  those of Ziada and Rockwell (1982) and Kaykayoglu and 

Rockwell (1985) except a f i n i t e  thickness edge instead of a t h i n  

leading edge will be used. Detailed flow visualization studies 

will be done t o  determine the effect  of edge scale and  offset  on 

-12- 



the vortex-leading edge interaction. 

f ie ld  i n  the edge region plays an impor t an t  role i n  the impingement 

process, detailed amplitude a n d  phase measurements will be performed. 

To minimize the effect  of possible three-dimensionality of the flow 

f ie ld  and the end-wall effect  on the pressure measurement, the 

pressure t a p s  will be aligned i n  a single row; this i s  i n  contrast 

w i t h  the V-shaped staggering of the pressure taps of the Kaykayoglu 

and Rockwell set-up. A simultaneous pressure measurement-flow 

Since the fluctuating pressure 

visualization technique , successfully used by Kaykayogl u and Rockwell 

(1985), will be used t o  construct the instantaneous pressure f ie ld  

on the surface of the edge. 

relation of the pressure amplitude and phase variation t o  the vortex- 

edge distortion process will be determined. A detailed description 

of the experimental set-up and techniques are given i n  the subsequent 

section of this report. 

Through these various experiments, the 

-1 3- 



EXPERIMENTAL SYSTEM AND TECHNIQUE 

In order to  investigate the mixing  layer-generated vortex and 

i t s  interaction w i t h  a leading edge, water was chosen as a f lu id  

medi um. 

a l s o  avoided possible acoustic-instabil i ty wave coupling. 

t e s t  section, 30.5 cm wide by 45.7 cm deep, was located a long  the 

closed c i r cu i t  water channel ( F i g .  1) .  In order t o  minimize distur- 

bances from the s ide  and f loor  wall-generated boundary layers, a 

secondary t e s t  section, 24 cm wide and 45.7 cm deep, was inserted 

within the main t e s t  section (F ig .  2 ) .  

and the secondary t e s t  section inser t  were made o f  plexiglass t o  

a1 1 ow detai 1 ed v i  s ual i zation s t u d i  es . 

Thi s working f l  u i  d a1 1 owed de ta i  1 ed f l  ow visual i zation and 

The main 

Both the main t e s t  section 

A honeycomb flow straightener and a s p l i t t e r  plate  were used t o  

generate a well defined two-dimensional mixing layer of two uniform 

streams w i t h i n  the t e s t  section ( F i g .  2 ) .  

layer section are given i n  Ziada and Rockwell (1982), hereafter 

referred to as Z-R. 

evolves into a we1 1-defined two-dimensional vortex w h i c h  subsequently 

impinges on a leading edge. 

generated vortex remains coherent w i  t h i  n the regi on of i nteres t . 
During  the course of the experiment, the impingement length and the 

flow speed were kept constant. 

U1=18.35 cm/s for  the h i g h  speed upper layer and U2=6.44 cm/s for the 

Details of the mix ing  

The unstable mixing layer grows and eventually 

As shown i n  Z-R, the structure o f  t h e  

The flow speed was fixed a t  
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low speed layer ( F i g .  2 ) .  

1 ow speed 1 ayer U1 /U2=2.85+0 - .Os, provi ded we1 1 -defi ned v o r t i  ces i n 

the downstream mixing layer w i t h  laminar boundary layers a t  separa- 

t i o n  h a v i n g  momentum thickness eOl=O.62 mm and eO2=O.O8 m, eo 

representing the i r  sum [see p. 81 of  Z-R, 19821. 

Reynolds number based on momentum thickness was g i v e n  as Re(AU,eo) = 

(U1-U2)eo/v = 157 o r  Re(Ul,eo) = Uleo/v = 239 i n  Z-R. 

ment length was fixed a t  L/eo = 60 (L=7.8 cm) from the trailing-edge 

of the s p l i t t e r  plate. 

Kaykayoglu and Rockwell (1985), hereafter referred t o  as K-R,  

generated two-dimensional vortex structure impinging upon a very t h i n  

leading-edge. Z-R also showed t h a t  a t  this impingement length, 

and previously noted flow conditions, there was no f ree  surface 

effect  on the self-sustained osci l la t ion of the mixing layer. 

in Z-R and  K - R ,  the structure of the incident vortex a n d  velocity 

profile of the flow f i e l d  i s  discussedin detail andhencewill be 

omitted here. I t  i s ,  however, suff ic ient  t o  say t h a t  the structure 

This freestream velocity r a t i o  of high t o  

The corresponding 

The impinge- 

This impingement length, w h i c h  was used by 

Both 

of the incident vortex i s  i n v a r i a n t  w i t h  the transverse offset  of 

the leading-edge; moreover the distribution of fluctuating velocity atthe 

vortex frequency u n s ( 6 )  where B i s  dimensionless frequency, agrees 

weJl w i t h  the S t u a r t ' s  nonlinear inviscid model (1967) of vort ic i ty  

concentration of  u=0.7. 

be studied w i t h  the safe assumption t h a t  the upstream flow conditions 

are n o t  Pffected by the various values of vortex-edge offset .  

Hence vortex-leading edge interaction can 
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For the experiment, three different types of leading-edges were 

used. The f i r s t  type of leading-edge was a pa i r  of NACA 0012 a i r -  

fo i l s  having a length of 12.7 cm and  6.4 cm machined from Plexiglas 

block. 

leading edge interaction. 

section as shown in Fig. 3. 

the angle of attack for the series of flow visualizations. 

various angles of attack were O", l o o ,  - loo,  and -5". The second 

type of leading edge was a 5 : l  e l l ip t ica l  leading edge with semi- 

in f in i te  length t ra i l ing  edge. 

machined from Plexiglas by Bridgeport CNC machines. These various 

thickness (%'I,  +'I, 1%") leading edges were used only for visualiza- 

tion studies,  in order t o  determine the effect  of edge scale on the 

vortex-leading edge interaction. 

mounted on a carr ier  system t o  allow adjustment along the direc- 

tion of the flow as well as across the flow (Fig. 2) .  The leading 

edge-plate assembly was suspended in the flow f ie ld  by three brass 

I t  was used for  preliminary visualization of the vortex- 

The airfoi l  was free-mounted i n  the t e s t  

This setup allowed a quick change in 

The 

Three different edge thicknesses were 

These leading edges were rigidly 

supports from the carr ier  which slides along the t o p  edges of the 

side walls of the test  section. 

For pressure measurements, i t  was necessary t o  design a special 

leading-edge, h a v i n g  a thickness of one inch and an e l l ip t ica l  ( 5 : l )  

shape. This leading edge contained 26 pressure taps, 12 along the 

t o p  surface, 12  along the bottom surface, and  one a t  the t i p  o f  
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leading edge, 

measurement a t  the individual t a p s  was similar i n  concept t o  the lead- 

ing edge used by K-R, b u t  was constructed nu& differently (Figure 5 ) .  The 

e l l ip t ica l  leading edge section was in i t i a l ly  machined from one piece 

of plexiglass ( I "  thick, 9" wide and 5" long). 

edge was cut i n t o  three pieces t o  f ac i l i t a t e  plumbing of 1/16" 0 brass 

tubes t o  transmit the pressure signals from the surface pressure 

taps t o  the pressure transducer v i a  valves. 

tion contained 26 pressure taps a long  the e l l i p t i ca l  contour.  To 

avoid possible wake effects from one t a p  t o  the next, a l l  the taps 

were staggered by 1/8". 

were presumed t o  ex is t ,  more pressure taps were concentrated there. 

The relevant dimensions and detailed drawing o f  the pressure t ap  loca- 

tions are shown i n  F i g .  5 [4:1 scale]. 

t o  be 1/32'' i n  diameter i n  order t o  minimize the error  i n  pressure 

measurement. 

Vollery (1961) showed t h a t  the error i n  stream-pressure measurement 

for  steady flow, in percent of dynamic head'(l /2 pU2), was less than 

0.4%. There will be also some error  i n  measurement near the t i p  of  

the leading edge due t o  sharp inclination o f  the pressure t a p  hole 

w i t h  respect t o  the surface. 

of 45' inclination of the t a p ,  s t a t i c  pressure variation of 0.4% 

of dynamic head can result. 

The necessary valving and  plumbing for the pressure 

Then the leading 

The 1" wide center sec- 

Since near the t i p ,  larger pressure gradients 

The pressure taps were chosen 

For this  size opening and water as a f luid medium, 

Erwin (1964) showed t h a t  for the case 

The remaining two side pieces of the e l l i p t i ca l  leading edge 

were hollowed o u t  t o  accommodate the brass t u b i n g  ( F i g .  4 ) .  Once 

the sections of tubing were f i t t e d  t o  the centerpiece, a l l  three 
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pieces were glued back together and  f i l l e d  with slow curing epoxy t o  

increase the overall s t i f fness  , and therefore i t s  natural frequency. 

Individual tubes were then connected t o  the valve assembly body 

(Fig. 6 ) .  The small brass valves in each pressure channel, located 

downstream of the t a p ,  allowed selective measurement o f  the pressure 

a t  the desired location. 

into a common pressure manifold where a single pressure transducer 

monitored the selected pressure signal (Fig. 7 ) .  The completed assem- 

bly of the leading edge and pressure measurement section, including 

the mount ing  plate, i s  shown in Fig. 8. 

All the pressure signals were then fed 

For the pressure measurements, a Kuli te  XCS-190-2D differential 

pressure transducer with a Paralene coated diaphragm was selected 

for i t s  small s ize  and high na tu ra l  frequency of 100 kHz. 

sure signals were amplified by a Tektronix, model TM 502 differential  

amplifier and then f i  1 tered with Krohn-Hi te  , model 3700 bandpass 

f i l t e r .  

off point and 6 Hz for  the high cutoff point. 

The pres- 

Nominal f i l t e r ing  frequencies were 0.5 Hz for  the low cut 

The nominal frequency 

of interest  d u r i n g  the measurement was around 4 Hz. 

monitored by a Tektronix 5223 Digitizing Oscilloscope. 

mini-computer w i t h  28 K ram and DEC-PDP 11/23 were used fo r  real-time 

spectral analysis. 

o b t a i n  amplitude and phase information of the pressure signal, a 

reference signal had t o  be used. 

hot wire probe, connected t o  a DISA 55D01 constant temperature 

Signals were 

A DEC-MINC 

In order t o  run  the cross-spectrum analysis t o  

For the reference signal, a DISA 
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anemometer, was used. The pressure a n d  the velocity signals were 

fed into the microcomputer (Fig. 9 ) .  

by the MINC minicomputer and the amplitude and re la t ive phase infor- 

mation were obtained by cross-spectral analysis. The same type of 

Fast-Fourier Transform ( F F T )  program used by Z-R and K-R 

cross-spectral analysis between velocity and  pressure signals. A 

to ta l  o f  512 sampling p o i n t s  were allowed by the program fo r  any given 

run .  

0.05 Hz resolution. T h i s  sampling interval p r o v i d e d  a sampling fre- 

quency of 13 Hz which was above the Nyquist frequency. 

aliasing effect  was avoided for  a l l  cases. 

spectral analysis i s  shown i n  Fig. 10. 

carried out i n  order t o  minimize possible error  i n  phase d a t a .  

Since the phase difference from the FFT,  +- active- 4- reference, 

Both  signals were f i r s t  digitized 

allowed the 

The sampling interval of 0.039063 seconds was used t o  obtain 

Hence the 

The concept of cross- 

Ensemble averaging was n o t  

P P 
close 

sub- 

re - 
to  

a v o i d  this problem, da ta  acquisition and reduction were repeated 

separately and then averaged w i t h  proper phase interpretation. 

f i l t e r s  also introduced some phase distortions i n  the s i g n a l  which 

may lead t o  error  in the cross-spectrum phase da ta .  

can be avoided i n  the case of cross-spectral analysis by simply 

The 

This, however, 

l i e s  e i ther  i n  the range 

to  IT may correspondingly 

sequent run  may give an 

of  0 t o  IT or  0 t o  -IT, an actual value 

indicate a value close t o  IT , while a 

ndicated value close to  -IT. This wil 

In order sul t i n  an ensemble-averaged phase value close t o  zero. 
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p u t t i n g  both f i l t e r s  for pressure and velocity signals t o  the same 

low and h i g h  cutoff frequencies. 

da t a  i s  the difference in phase angle between the active and  refer- 

ence signal, any common phase shift  produced by the f i l t e r s  a t  the 

same set t ing will cancel each other out. 

concern that the long and  small diameter brass tubes, transmitting 

the pressure signals from the  taps t o  the pressure transducer, may 

introduce undesirable amplitude attenuation and phase distortion. 

A calibration scheme was devised t o  check th i s  effect .  An eccentric 

motor drive was used t o  displace mass inside a fixed volume container 

to produce s t a t i c  pressure variation. 

ducer was mounted rigidly next t o  the active tap and  both signals 

were processed v i a  the same instrumental setup i n  order t o  obtain 

cross-spectral data ( F i g .  11 ) .  Two taps (No. 13 & No. 1 ;  Fig. 1 2 )  

were checked since they represented the two extreme cases, i .e.  

shortest  and  longest tubes. 

i n p u t  signal of varying frequency from 0 t o  5 Hz, corresponding t o  

the frequency range of interest .  The result  showed minimal amplitude 

attenuation i n  the case o f  t a p  No. 1 (lpngest tube) and  vir tual ly  no 

amplitude distortion for  tap No. 13 (shortest  t e s t  tube!. The 

result  also showed a maximum phase distortion o f  0 . 1 8 ~  a t  5Hz f o r  

t a p  No. 1 and 0 . 0 5 ~  f o r  the t a p  No. 13 (F ig .  1 2 ) .  Both results 

showed t h a t  the original concern was unfounded and  the resulting 

errors were minimal. 

Since the cross spectrum phase 

There was a l s o  a major 

A reference pressure trans- 

Both taps were swept w i t h  a sinusoidal 
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In order to  obtain detailed insight i n t o  the vortex-edge inter-  

action mechanism, various means of flow visualization were used. To 

clearly see the vortex rollup and i t s  subsequent interaction with 

the leading edge, hydrogen bubble timeline visualization was extensively 

uti l ized. Hydrogen bubble time lines were generated by a platinum 

wire (0.00111-0.00311 4 )  positioned vertically on a wire probe mount .  

Since the technique o f  hydrogen bubble visualization i s  well known, 

only the pertinent details  will be discussed. 

The necessary lighting f o r  illuminating the hydrogen bubble 

l ines was p rov ided  by two 90 watt strobascopic lights (Instrobe 90).  

These strobes were synchronized t o  the Instar video system t o  operate 

a t  a f lash duration of ten microseconds 

of 120 Hz. 

pictures a t  a framing rate of 120 frames per second. 

system had horizontal and vertical sweep frequencies of  25.2 kHz a n d  

120 Hz respectively, w i t h  a resolution of 250 l ines.  An overall 

view of the typical hydrogen bubble visualization i s  shown i n  Fig. 

13. Once the video sequences were taken, they were played back 

frame by frame and then the N i  kon F-3 35m SLR was used t o  take the 

f inal  photos from the video screen. 

a t  a triggering frequency 

The Instar video system was capable of t a k i n g  video 

The Instar 

The hydrogen bubble wires were located in various posi t ions i n  

order t o  see the detai ls  o f  the flow f i e l d  along the top and bottom 

surfaces of the leading edge ( F i g .  14a,b). Sometimes, instead o f  a 

s t ra ight  wire, a notched wire was used t o  generate lines of  hydrogen 
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bubbles, This technique i s  similar i n  principal t o  t h a t o f  Schraub 

e t  a1 (1965), b u t  instead of selectively insulating the wire, a 

notched wire was used to  generate the hydrogen bubble l ines.  

l ines can show the f lu id  movement normal t o  the flow. 

the notched wire a t  the t i p  o f  the leading edge rather than well 

upstream of i t ,  the secondary vortex formation or interaction down- 

stream of the edge can be seen more clearly ( F i g .  14c). 

These 

By locating 

Sometimes food-dye color was injected into the flow f i e ld  for  

preliminary visualization and also to monitor the flow f i e ld  during 

measurements. Since the food-dye color has relatively neutral 

buoyancy, laying i t  on the surface of the s p l i t t e r  plate generated 

continuous streaklines (F ig .  14d). The dye injection technique was 

also necessary in the case of simultaneous pressure-flow visualization. 

In order t o  obtain the time-phase relationship between the cross 

spectrum d a t a  and the flow visualization, a split-screen, simultaneous 

pressure-flow visualization had t o  be done. 

clearly i 11 ustrated i n  F i g .  15. 

the streakline from the dye injection and the pressure signal dis- 

played on the oscilloscope. 

e lectr ical  pulsing of the hydrogen bubble l ine  disturbs the pressure 

signal,  only the dye injection could be used. The required lighting 

was provided by a 1000 w a t t  constant intensity studio l i g h t ,  diffused 

by semi-transparent white p las t ic  sheet ( F i g .  15) .  Once the cross- 

spectrum phase data and the flow visual izationwere correlated, 

The experiment setup i s  

Two cameras simultaneously monitor 

As mentioned previously, since the 

-22- 



instantaneous pressure plots,  along the leading edge surface, were 

constructed for  given time t. 

tures were physically related through th i s  technique. 

was used successfully by K-R and further detai ls  can be obtained 

from that  paper ( K - R  1985). Unlike the previous case of cross-spec- 

trum analysis, here the phase distortion caused by the f i l t e r  played 

a significant role. 

cessed through the f i l t e r ,  the high and low cutoff frequencies had t o  

be s e t  i n  such a way as t o  minimize phase s h i f t  from the visualized 

data and  the pressure signal. A signal generator was used in con- 

junction w i t h  the mini-computer to cal ibrate  the f i l t e r  sett ings.  

A sinusoidal signal of known phase and frequency was processed 

through the f i l ter-amplif ier  setup. 

the o u t p u t  signal through the cross-spectral analysis, i t  was possible 

t o  obtain the proper set t ing of the frequency cutoff points fo r  

m i n i m u m  phase sh i f t .  

The plates and the corresponding p i c -  

This technique 

Since only one signal (pressure) i s  being pro- 

By checking the phase angle of 
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VORTEX INTERACTION WITH A LEADING-EDGE OF FINITE THICKNESS 

Preliminary Visualization of a Concentrated Vorticity-edge 
Interaction a t  a Single Frequency 

As discussed in the introduction, the case o f  vortex-thin leading- 

edge interaction was studied in detail by Z-R and K-R. 

ti g a t i  on , the case of interaction between concentrated vor t i  ci t y  

fie1 d and a f i n i t e  thickness leadi ng-edge was investigated. The 

visualization study was performed for two different geometries; a 

5:l e l l i p t i ca l  leading-edge and a f i n i t e  length a i r fo i l  (NACA0012). 

This preliminary visualization showed t h a t  the vortex-edge interaction 

process was substantially different from the thin leading-edge vor- 

tex interaction. 

t i o n  process there was a clear "spli t t ing" o f  the incident vortex 

w i t h  fractions of i t  passing above and below the edge. 

vortex interaction with the leading-edge produced a pronounced secon- 

dary vortex of opposite circulation on the lower surface o f  the 

leading-edge. K-R found t h a t  there was sweeping of the viscous layer 

about the t i p  from the top  t o  bottom; th i s  process, caused by a 

s t rong  induced  f l w  between t h e  primary vortex and the t i p ,  directly 

led t o  the formation o f  a secondary vortex. 

In th i s  inves- 

In the case of thin leading-edge vortex interac- 

The primary 

In the case of a vortex incident upon a 5:l e l l i p t i ca l  leading- 

edge, a substantially different interaction process takes place. 

Figure 16 show a primary vortex, rotating in the clockwise direction, 

impinging on the leading edge. The vortex i s  i n i t i a l ly  in line with 
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the edge ( i .e .  6/2T=O where 5 i s  the transverse edge-vortex offset 

and 2T i s  the edge thickness); however, as i t  approaches the leading- 

edge, i t s  center moves s l ight ly  below the centerlirie of the leading- 

edge. This s l igh t  deviation of the incident vortex causes the major 

portion of i t  t o  dive below the leading-edge. 

one can see the s tar t  of  the primary vortex-induced flow separation 

fmm the underside of the leading-edge. 

t o  formation of the secondary vortex. 

vortex moves downstream with the same phase speed as the correspond- 

i n g  primary-vortex. 

small fraction of the incident primary vortex i s  swept upward. 

the mean velocity of the f luid above the leading-edge i s  s t i l l  greater 

t h a n  the velocity of the f luid below the leading-edge, the portion 

of the primary vortex above the edge i s  rapidly accelerated a l o n g  

the upper surface. 

In the t h i r d  photo ,  

The separation process leads 

Once formed, the secondary 

Meanwhile, along the upper surface, only a 

Since 

Figure 17 shows a simplified schematic of the incident vortex 

wave and the lower surface pressure wave a t  the leading-edge. 

simplified diagram shows t h a t  the downstream travelling wave has 

characteristic wavelength A, and convective speed C,, which can be 

linked t o  the characterist ic incident vortex wave (A,,, C v ) .  

18 shws a wider view of the flow f ie ld  ups t r eam of the leading- 

edge. 

of hydrogen bubbles i s  used t o  show the successive interaction of the 

vortices with the leading-edge. 

This 

Figure 

Instead o f  using finely-pulsed hydrogen bubble l ines,  a block 

The sequence of the photos shows 
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that  the wavelength of the primary vortices i s  of the order of 

twice the thickness of the leading-edge. I t  i s  interesting t o  note 

t h a t  the secondary vortex, once formed, continues t o  travel along 

the bottom surface o f  the leading-edge as i t  i s  swept dawnstream, 

nested within i t s  corresponding primary vortex. 

clearly see that only a fraction of the primary vortex i s  swept above 

the leading-edge allowing the distorted primary vortex t o  remain 

relatively in tac t  along the lower surface. 

Once again, one can 

Figure 19 shows the same interaction process as in Figures 16 

and 18 b u t  a notched wire, instead of a straight wire, i s  used t o  

generate the lines of hydrogen bubbles. 

section, th i s  technique can show the fluid movement normal t o  the 

flow. 

t h a n  well upstream of i t .  Locating the wire well upstream of the 

edge may show the primary vortex roll-up and the i n i t i a l  interactions 

with the leading-edge, b u t  locating the wire a t  the t i p  of the edge 

brings o u t  the f e a t u m  o f  the secondary vortex formation and inter-  

ac t ion  occurring downstream of the edge more clearly. 

photo shows the continued roll-up of distorted primary vortex as well 

as the formation of a secondary vortex on the lower surface of the 

edge. 

pair  travels downstream along the lower surface of the edge, i n  much 

the same manner as shown in previous photos. However, on the upper 

side of the leading-edge, one can only see a s l igh t  deviation of the 

As discussed in the previous 

The wire i s  located a t  the t i p  of the leading-edge rather 

The f i r s t  

The following photos show t h a t  th i s  primary-secondary vortex 
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streakline patterns. 

of the primary vortex on the upper side. Clearly most of  the inci-  

dent vortex i s  swept below the leading edge as suggested in Figures 

16 and 18. 

There i s  no evidence o f  any further roll-up 

These series of photos suggest t h a t  when the scale of the primary 

vortex i s  sufficiently small w i t h  respect t o  the thickness o f  the 

leading-edge, a major portion o f  the incident vortex will dive below 

the t i p  rather t h a n  "splitll i n t o  two primary vortices as in the case 

o f  thin leading-edge vortex interaction. There i s  also no "sweeping" 

of the fluid from the upper t o  lower surface of the edge, a t  least  f o r  

the vortex scale examined here. The Reynolds number based on leading- 

edge thickness and average velocity (U1+U2)/2 fo r  the case examined 

was 2400. 

ing t o  the secondary vortex formation was caused only by the adverse 

pressure gradient o f  the incident vortex. 

A t  th is  Reynolds nu-nber, the leading-edge separation lead- 

I n  the next series of the preliminary investigation, a f i n i t e  

length airfoi  1 (NACA 0012) replaced the 5:l e l l ip t ica l  leading-edge. 

The thickness of the leading edge of the a i r fo i l  was about  one-half 

t h a t  of the  e l l i p t i c a l  leading-edge. The upstream flow conditions and  

the scale of the incident primary vortex were k e p t  constant,  The Rey- 

nolds number based on a i r foi l  chord C and average velocity (U1+U2)/2 

was 7740. Figure 20 shows a vortex incident upon the a i r fo i l  a t  

0' angle of attack with respect t o  the free stream. 

wire technique was used t o  obtain long duration pulses with shorter 

duration timelines embedded within them. The f i r s t  

photo shows the front  edge of the bubble lines 

A pulsed 
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being distorted by the leading-edge of the a i r fo i l .  

p h o t o  clearly shows the flow speed difference between the upper and 

lower surface of the a i r fo i l ;  the f r o n t  edge of the bubble pa tch  

has advanced further on the upper surface t h a n  the lower surface. 

The fourth photo clearly shows the sp l i t t i ng  of the primary vortex 

on the upper and lower side of the a i r fo i l .  The upper pa r t  of the 

primary vortex continues t o  grow and move close t o  the surface of 

the airfoi  1 ,  while the bottom part of the primary vortex induces flow 

separation. 

the secondary vortex i s  clearly evident. 

The second 

In the subsequent photos, the formation and growth o f  

In comparison w i t h  the thicker 5:l e l l i p t i ca l  leading-edge, 

there i s  a well-defined ' 'splitting" of the incident vortex and for- 

mation of a relatively large-scale secondary vortex. 

examines the same interaction process b u t  focusses on the growth 

of the primary vortex along the upper side of the a i r fo i l  using the 

pulsed bubble wire located a t  the t i p  of the leading-edge, This 

was done t o  check whether the primary vortex along the upper surface 

continues t o  "roll-up" as i t  moves downstream. This continued rol l -  

up process i s  evident by following photos 1 t h r o u g h  4. 

vortex, t h o u g h  distorted continues t o  roll-up despite the presence 

of the sol id  boundary and stays along the upper surface o f  the a i r fo i l .  

Next, i n  order t o  determine the effect  of angle of attack on 

the interaction process, various values of angle of attack ~1 were 

t r ied  (a=-lOo, -5", 10'). 

Figure 21 

The primary 

Figure 22 shows the case of ~(=-10'; th is  
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relatively large negative angle of attack induced early flow separa- 

t i o n  from the leading-edge region. 

vortex formation and subsequent breakdown of the primary-secondary 

vortex pair. 

interaction process. One can see tha t  once the secondary vortex for- 

mation occurs, the primary-secondary vortex pair  moves down away from 

the surface of the a i r f o i l ;  this i s  i n  contrast to  Figure 21 where 

the primary-secondary vortex pair moves along the surface of the a i r -  

fo i l .  The scale of the secondary vortex i n  this case also seems t o  

be of the order of the primary vortex. 

23 as well as i n  F i g u r e  24 where a wider view of the interaction pro- 

cess i s  shown. 

The photos show the secondary 

Figure 23 shows closeup visualization of the same 

This can be seen i n  Figure 

If the wire i s  located a t  the t i p  of the a i r f o i l ,  a more inter-  

Figure 25 shows 

This ser ies  shows the n a t u r e  of the unsteady separ- 

esting detail  i n  the flow structure can be examined. 

a case of az-5'. 

ation zone i n  the leading-edge region pr ior  t o  and a f t e r  the arrival 

of the incident vortex. 

the adverse pressure gradient caused by the negative angle of attack 

can be seen. 

mary vortex. 

a separation process from the leading edge, this time due t o  the 

primary vortex, This process leads t o  the formation of two secondary 

vortices along the bottom surface of the airfoil .  

photo one can see simultaneously the distorted primary vortex along 

In the f i r s t  photo, flow separation due t o  

This process takes place before the arrival of the pri- 

In the t h i r d  and subsequent photos one can again see 

In the f i f th  
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the t o p  and bottom surface of the a i r fo i l  as well as the two secon- 

dary vortices, one due t o  angle of attack ~1 and the other t o  the 

outside separation from the edge caused by the primary vortex-edge 

interaction. 

stronger secondary vortex due t o  the primary vortex entrains the f i r s t  

In the s i x t h  and seventh photos, one can see t h a t  the 

secondary vortex and the two combine while the distorted pr 

tex continues t o  travel along the upper and lower surfaces. 

26 shows the case of positive angle of attack (o=1Oo). The 

of the ser ies  shows the i n i t i a l  reaction of the incident pr 

tex as well as the previous distorted primary vortex on the 

mary vor- 

Figure 

f i r s t  photo 

mary vor- 

upper 

side. 

and continued growth of the scale of  distorted primary vortex. 

sixth and seventh photos show smaller scale vortex shedding upstream 

o f  the distorted primary vortex along the upper surface. 

clear,  however, whether th i s  secondary vortex formation i s  due t o  

the angle o f  attack or induced by the primary vortex, 

The second photo shows the sp l i t t ing  of the primary vortex 

The 

I t  i t  not  

Effect of  Edge Thickness Scale on the Interaction Process 

The previous studies of the vortex-leadi ng edge interaction 

process seem t o  indicate the importance of edge thickness (scale) 

relative t o  the incident vorticity f ie ld  on the interaction process. 

To date, however, no detailed studies have been done t o  actually 

determine the effect  of edge thickness scale on vortex-leading-edge 

interaction. 

there i s  a direct relationship between the edge thickness and the 

incident vortex distortion process, 

The preliminary visualization seems t o  indicate t h a t  

In  the case of a 5:l  e l l ip t ica l  
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leading-edge, the  m a j o r i t y  o f  t he  i n c i d e n t  pr imary vor tex  passes 

below t h e  edge surface. 

f o i l  hav ing h a l f  t h e  th ickness o f  the  5: l  e l l i p t i c a l  leading-edge, 

there  was a c l e a r  % p l i t t i n g "  o r  "severing" o f  the  i n c i d e n t  vor tex  

much 1 i ke the  case o f  t h i  n l ead i  ng-edge-vortex i n t e r a c t i  on. I n  

o rder  t o  i n v e s t i g a t e  t h e  e f f e c t  of edge scale f u r t h e r ,  t h ree  5: l  

e l  li p t i  c a l  leading-edges o f  d i f fe ren t  thickness were used f o r  v i sua l -  

i z a t i o n  s tud ies  (2T=1/4", 1/2", 1 1/2"). Since t h e  phys ica l  thickness 

o f  the  edge i t s e l f ,  w i thou t  cons ider ing the  r e l a t i v e  sca le  o f  t h e  

i n c i d e n t  v o r t i c i t y  f i e l d ,  i s  meaningless, we in t roduce a parameter 

known as the  " v o r t i c i t y  thickness", designated by AW.. The v o r t i c i t y  

th ickness can be de f ined as, 

On the  o the r  hand, i n  the  case o f  t he  a i r -  

where AU i s  the  v e l o c i t y  d i f f e rence  U1-U2 between the  upper and lower  
d i  sur face o f  t h e  mix ing  l a y e r  and (-) 
d~ max 

s lope o f  t he  mean v e l o c i t y  p r o f i l e  across the m ix ing  layer .  

exper imenta l ly  measured the  mean v e l o c i t y  p r o f i l e  across the wake 

reg ion  o f  t h e  mix ing  l a y e r  and foun t  i t  t o  be i n  good agreement w i t h  

the exact s o l u t i o n  of t h e  Stuar ts  non l i nea r  model a t  v o r t i c i t y  con- 

cen t ra t i on  parameter o f  a=0,7. 

a maximum s lope (dij/dy)max can be found graph ica l l y .  Then, us ing 

the  previous d e f i n i t i o n  ,the v o r t i c i t y  th ickness A W  can be ca lcu lated.  

corresponds t o  t h e  maximum 

Z-R have 

From the  graph o f  y/eR vs. 2(;-ua/AU), 
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For the given experimental conditions, the value of vort ic i ty  thick- 

ness AU turns o u t  t o  be approximately 9 mm. 

of the mean velocity profile from Stuar t ' s  model, 

I f  the exact solution 

s i  nh ( ~ T Y / X )  

[ l -a2+s inh2(2~y/~) l f  

- 
u = U a +  

i s  used t o  obtain the maximum slope, 

then the theoretical value of A U  can be calculated. Using the vor t i -  

c i ty  concentration parameter of azO.7 and the experimentally measured 

wavelength x=35 mm for the given incident vort ic i ty  f i e ld ,  A W  i s  

found t o  be approximately 8 mm. This value i s  i n  good agreement 

w i t h  the previously obtained AU of 9 mn. 

The circulation of the incident vort ic i ty  f i e l d  can also be 

easi ly  calculated by integrating across the flow over one wavelength 

t o  obtain, 

Irl = x(u,-u,)  = X A U  

The absolute value of the circulation r i s  calculated to  be 41.7 
2 cm / s .  

u s i n g  previously obtained value of A U ,  

The value of the circulation can be nondimensionalized by 

r* = Irl= x = f ( a )  = 3.9 
AwAU Au 
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where r*, a nondimensionalized circulation becomes a function only 

of a, the vort ic i ty  concentration factor. 

of the edge can be transformed to themore meaningful nondimensionalized 

value o f  ~ T / A u ,  where 2T i s  the actual thickness of the leading-edge 

as s ta ted previously. 

i t ed  w i t h  respect t o  e R  the local momentum thickness a t  the stream- 

wise station 110, upstream of the leading-edge ( e o  i s  the sum o f  

momentum thickness a t  the higher-speed side (eel) and the momentum 

thickness a t  the lower speed side ( e o 2 ) ) "  The corresponding values 

of 2T/eR for  the three edge thickness are 3.30, 6.7, and 20.1. F i g -  

u r e  27 shows the vortex interaction w i t h  5:l e l l i p t i ca l  leading-edge 

for 2T/aw=0.7. In comparison, the e l l i p t i ca l  leading-edge used i n  

the preliminary visualization study would correspond t o  2T/aw=2.8. 

One can clearly see the dramatic effect  o f  the edge thickness (scale)  

Now the physical thickness 

The edge thickness can also be nondimensional- 

) 

on the interaction process. 

almost equally above and below the leading-edge. 

contrast t o  the thicker edge o f  2T/aw=2.8. 

In th i s  case, the primary vortex s p l i t s  

T h i s  i s  i n  sharp 

The secondary vortex for- 

mation below the edge surface, however, does n o t  d i f f e r  markedly 

from the previous case. The l w e r  par t  o f  the distorted primary 

vortex induces the formation of secondary vortex and the primary- 

secondary vortex p a i r  travels downstream relatively intact .  

case o f  thicker leading-edge of 2T/aw=1,4, almost the same interaction 

process takes place. 

incident vortex and subsequent formation of the secondary vortex 

along the lower surface o f  the leading-edge. 

In the 

Figure 28 again shows the "severing" of the 

One can note t h a t  
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even a t  th i s  thickness ( sca le ) ,  the a p p a r e n t  s ize  of the vortex 

seems t o  be of the same order as the thickness of the leading-edge. 

However, when the edge thickness i s  substantially increased as 

i n  the case of 2T/ r \~=4.2 ,  a much different interaction process takes 

place. Figure 29 shows that the incident primary vortex i s  no longer 

severed by the leading-edge. 

incident primary vortex dives below the leading-edge and though  dis 

torted, remains relatively intact  as i t  travels downstream. The 

formation o f  the secondary vortex, however, does n o t  seem t o  differ  

much from any of the previous cases. 

o f  the effect  o f  edge thickness on the interaction by comparing 

three different thicknesses side by side. 

see t h a t  when the thickness of the leading-edge remains relatively 

small, the interaction process emulates t h a t  o f  the t h i n  leading- 

edge interaction process, except t h a t  there i s  no longer "sweeping" 

of the flow from the t o p  t o  the bottom. 

scale becomes relatively large w i t h  respect t o  the incident vortex, 

then a different process takes place; most or a l l  of the incident 

vortex dives below the surface of the leading-edge. 

and the scale of the secondary vortex, on the other h a n d ,  do no t  

seem t o  be effected by the edge thickness scale. Judging from the 

previous studies,  the edge offset  rather t h a n  the thickness (scale) 

seems t o  have a more drastic effect  on the formation of  the secondary 

vortex. 

For t h a t  matter, a l l  of the (marked) 

Figure 30 shows the overview 

In conclusion, one can 

However, when the thickness 

The formation 
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Effect of Edge Offset on the Interaction Process 

As discussed ea r l i e r ,  Knisely and Rockwell (1979) found t h a t  

the interaction dynami cs of the vortex-corner impingement case were 

very sensitive t o  the alignment between the corner and  the vortex. 

In the case where the corner and the center of the incident vortex 

were nearly aligned, "severing" of the vortex and generati on of the secon- 

dary vortex occurred on the vertical wall. 

alignment of the t h i n  leading-edge and the incident vortex center 

had a strong influence on the interaction process. 

the strength and the relative scale of the secondary vortex was 

greater for  the case where the center of the incident vortex passed 

Z-R also found t h a t  the 

Z-R found  t h a t  

s l ight ly  above the leading-edge. 

shown t h a t  the edge offset  relative t o  the oncoming vortex plays an 

important role in the interaction process. 

Clearly a l l  these studies have 

For th i s  investigation, cases o f  three different offsets for 

the 5:l e l l i p t i ca l  leading-edge were examined. The edge offset ,  

relative t o  the center of the incident vortex, is &noted as 6 (Figure 17) 

and i s  nondimensionalized with respect t o  the edge thickness 2T. 

nondimensional thickness for the 5 : l  e l l i p t i ca l  leading edge used 

f o r  this study i s  2T/aw=2.8. 

for  zero offset  case o f  e/ZT=O. 

l a r  t o  t h a t  o f  Figures 16,  18 and 19. 

lines i s  generated upstream of the leading-edge t o  show the incident 

The 

Figure 31 shows the interaction process 

This series of photos i s  very simi- 

A block o f  hydrogen bubble 

vortex and the subsequent edge-impingement process. One can clearly 
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see the d is tor t ion  of the incident primary vortex and  subsequent 

separation of the flow near the t i p  of the leading-edge. 

mation of  the secondary vortex is  well defined i n  the l a t t e r  par t  o f  

the ser ies .  For t h i s  offset  case and thickness scale ,  a l l  of the 

incident primary vortex dives below the leading-edge and the "spl i t -  

t i n g "  process does n o t  occur. Figure 32 shows a ser ies  of photos  of 

finely pulsed hydrogen bubble lines generated a t  the t i p  of the leading- 

edge. One can see a s l igh t  distortion of the boundary layer above 

the leading-edge b u t  clearly no par t  of the primary vortex is  visible. 

The secondary vortex, once generated, stays close t o  the lower sur- 

face of the edge and travels downstream, nested within the primary 

vortex. 

continuous hydrogen bubble l ines instead of finely pulsed lines. 

Not much more information i s  evident in  th i s  ser ies  except one can 

clearly see the secondary vortex generation and the boundary layer 

development above the leading-edge. 

The for- 

Figure 33 shows the same interaction process using the 

In the next ser ies  of pictures a s l ight ly  positive offset  case 

of  ~ /2T=0 .1  i s  examined. 

w h a t  s imilar t o  the previous ser ies .  

ference between the two offset  cases. 

positive offset ,  the generation of  the secondary vortex is suppressed 

and the roll-up process of the secondary vortex i s  not  as well defined. 

Again, a l l  of the incident primary vortex passes below the leading- 

edge surface and no ac t ion  can be seen abo*re the edge. 

Figure 34 shows a sequence of photos some- 

There i s ,  however, some dif- 

In t h i s  case of s l ight ly  

Figure 35 
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shows tha t ,  i n  th i s  offset  case, the flow along the upper surface 

of the leading edge i s  not a t  a l l  disturbed by the vortex impinge- 

ment. 

cess and disintegrates downstream of the edge. 

can also be seen i n  Figure 36. 

the positive offset  case produces a much less well-defined and weaker 

secondary vortex and a l l  of the incident primary vortex passes below 

the leading-edge. 

change i n  the offset  produces a significantly different interaction 

process, i .e. for the case o f  negative offset  corresponding t o  5/2T= 

The secondary vortex also does not  complete the roll-up p r o -  

A similar process 

Thus, much like the findings of Z-R, 

Also, as i s  evident from the pictures,  a s l igh t  

-0.4. 

Figure 37 shows t h a t  for  the case of negative offset  the inci-  

dent vortex i s  relatively undisturbed by the sol id  boundary. The 

primary vortex moves away from the leading-edge as i t  travels down- 

stream, and continues t o  roll-up. 

even more c early. The primary vortex i s  relatively undistorted 

and rap id ly  moves away from the upper surface of  the edge; as i t  

travels downstream, there i s  no evidence of any secondary vortex for- 

mation a t  any time d u r i n g  the interaction process. 

mation can also be gathered from Figure 39. 

ever, why the incident vortex, instead of  deforming against the 

sol id  boundary,  moves away from the surface. 

vortex causes a separation a t  the t i p  of the leading-edge and the 

Figure 38 shows this  process 

The same infor- 

I t  i s  no t  c lear ,  how- 

Perhaps the incident 
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ensuing rapid boundary layer growth moves i t  away from the surface. 

The pictures themselves, however, do n o t  offer  suff ic ient  informa- 

tion t o  confirm th is .  In Figures 40, 41 and 42, a l l  different off- 

s e t  cases are compared side by side for different hydrogen bubble 

visualization techniques. 

t h a t  the edge of fse t ,  relative t o  the center of incident  vortex, 

I t  i s  clear from these ser ies  of pictures 

has a much stronger effect  on the formation of the secondary vortex 

t h a n  the effect  of edge thickness (scale) .  

offset  on the interaction process can be further studied by examin- 

ing the mean and instantaneous pressures along the surface of the 

Now the e f fec t  of edge 

leadi ng-edge . 

Amplitude and Phase Variation o f  Pressure i n  Leadinq- 
Edge Region 

The amplitude and phase distribution of the fluctuating pressure 

f i e ld  along the lower and  upper sides of the edge i s  obtained from 

the cross-spectral analysis described in the section on the experi- 

mental system and technique. Figure 43 shows the var ia t ion of the 

pressure amplitude and phase along the lower and u p p e r  surfaces of 

the leading-edge for  the three different offset cases (5 /2T  = 0 ,  0.1 , 
-0.4) discussed previously. The corresponding pictures are represen- 

ta t ive photos taken a t  time t / T  = 0 where T i s  the period of the 

vortex shedding cycle. 

when the incident vortex i s  j u s t  impinging on the leading-edge. 

Time t = O  i s  a rb i t ra r i ly  chosen as the instant 
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The upper and lower surface pressures are respectively denoted as 

Pu and P2. 

value for each offset  case. Symbol X represents the l inear distance 

along the centerline of the leading-edge and i s  non-dimensionalized 

w i t h  respect t o  T ,  the half thickness of the edge. For the case of 

5/2T=0, along the upper surface, the pressure amplitude rapidly 

decreases a1 ong the downstream di recti on. The ampli tude decreases 

so charply t h a t  beyond X/T=2.5 no meaningful information could be 

gathered. The phase @tu, on the other hand,  jumps by more t h a n  IT 

along the t i p  region then remains relatively constant. 

... -# - 
The value of Pmax corresponds t o  the maximum rms pressure 

In order t o  

interpret  th i s  information we need 

where C i s  the wave propagation o r  

t o  examine the following equation 

convective speed, x i s  the wave- 

length and f is  the frequency. Thus relatively constant phase @ or 

/ d x  = 0 corresponds t o  very h i g h  propagat ion speed on the upper d%,R 

surface of the edge. This can be directly related t o  the physics 

of the flow. From the previous visualizations one can see t h a t  the 

major por t ion ,  i f  not a l l ,  of the incident primary vortex passes 

below the edge surface. Hence, along the upper surface there is  no 

wavelike motion and  from potential flow theory one can deduce that  

the upstream perturbation translates t o  a simultaneous loading  of 

a l l  the pressure taps along the upper surface of the edge. This, 

i n  turn, would lead t o  a seemingly constant phase along the upper 

surface. 

resul t .  

The lower surface, however, shows a markedly different 

The maximum pressure amplitude occurs a t  X/T=O.O (steady 
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flow stagnation p o i n t ) ,  peaks again a t  X/T=O.4, and  then decreases 

downstream. The reason for the second peak a t  X/T=0.4 may be due 

to’separation and onset o f  the secondary vortex formation near t h a t  

location. 

stream a t  the t i p  region. The wave propagation speed C,, calculated 

from the mean phase speed, agrees well w i t h  t h a t  value obtained 

from the actual visualization da ta .  From the change i n  the slope 

d$R/dx, one can see t h a t  the flow is i n i t i a l l y  accelerated a t  the 

t i p  region t h a n  is decelerated a long  the region of decreasing curva- 

ture ( i  .e. decreasing favorable pressure gradient). 

The phase, on the other hand, continues t o  increase down- 

The positive offset  case o f  5/2T=0.1 produces a sl ightly d i f -  

ferent result .  

decreasing pressure amplitude and a relatively constant phase. 

same explanation applies t o  this  case as i n  the previous offset case. 

Along the lower surface, the phase da ta  seems t o  be very similar 

t o  the no offset  case. 

i s  i n  good agreement w i t h  the actual da ta  obtained from the vl’sual- 

ization. 

from the previous case; the maximum pressure amplitude, instead o f  

occurring a t  X/T=O.O occurs a t  X/T=O.I. 

n o t i n g  t h a t  the s l igh t  positive offset causes the incident primary 

of the leading edge; this  

y downstream o f  the steady 

Along the upper surface, again there i s  a rap id ly  

The 

Again, the calculated wave propagation speed 

The pressure amplitude, on the other hand,  differs s l ight ly  

This can be explained by 

vortex t o  impinge slightly below the 

causes the peak pressure t o  occur s l  

flow stagnation p o i n t .  
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The l a s t  offset  case of 6/2T=-0.4 produces quite a different 

result .  

rap id ly  decreases t o  a very small value and the phase variation 

remains relatively constant. 

vortex passes below the leading-edge, the same explanation as i n  

the two previous cases can be applied. 

the upper surface dominates the interaction. The maximum pressure 

amplitude occurs a t  X/T=0.8; th i s  location corresponds t o  the pri- 

mary vortex impingement region. Why there i s  such a sharp decrease 

i n  the amplitude past  X/T=2.0 is  not  very clear. 

t h a t  the primary vortex moves away from the surface downstream of 

X/T=2.0 may explain the anplitude result. 

the other hand,  i s  very similar t o  those of two previous cases. The 

As expected, along the lower surface, the pressure amplitude 

Since no p a r t  of the incident primary 

The vortex dynamics along 

Perhaps the fact  

The phase v a r i a t i o n ,  on 

only difference i s  t h a t  instead of covering  IT, th i s  case only covers 

  IT, indicating a substantially longer wavelength. 

result  seems t o  confirm th i s  observation. The reason for the drast ic  

change i n  the wavelength may be attr ibuted t o  the na tu re  of the 

experimental set up w h i c h  generates the mixing layer. Since the 

extreme negative offset  forces the vortex t o  travel along the upper 

surface of the leading-edge, where the flow speed i s  substantially 

higher t h a n  t h a t  of below, elongation o f  the vortex wavelength may 

occur. In general, onecansee t h a t  the resultant amplitude and phase 

variations along the edge surface for  the three offset  cases agree 

well w i t h  the physics of the flow a n d  the visualization da ta .  

The visualization 
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Instantaneous Pressure Fields 

Utilizing the same technique successfully employed by K-R, 

i t  i s  possible t o  construct the instantaneous pressure f ie ld  on the 

upper and lower surfaces o f  the leading-edge a t  successive instants 

time of t ;  t = O  i s  chosen arb i t ra r i ly  as the instant in time just 

before the distortion of the primary vortex due t o  the impingement 

process. 

and corresponding f l  ( k ~  visualization (Figures 45 through 62)  , the 

instantaneous distribution of the pressure waves along the upper 

and lower surfaces of the edge and the photos of the interaction 

process a t  t h a t  i n s t a n t  are given a t  f ive values of time t over 

the oscil lation cycle period T ( t = O ,  1/5T, 2/5T, 3/5T, 4/5T). The sym- 

bol P ( x )  denotes the rms pressure amplitude envelope which is  a 

function of the distance x only and  the P ' ( x , t )  denotes the instan- 

taneous pressure which i s  a function o f  the distant x as well as the 

time t. The corresponding nondimensional distance along the center- 

l ine of the edge x/T i s  indicated on the pressure plot as well as 

on the photos.  Figure 45 shms the case of 5/2T=O. Along the upper 

surface, the pressure amplitude i s  relatively small and constant 

( i .e.  no wavelike motion), 

face, one can clearly see the propagating pressure wave as a function 

of time. 

flow separation a t  t=2/5T shows a maximum negative pressure near 

the separation point. As expected, the onset of the separation 

In each composite showing the instantaneous pressure f i e ld ,  

On the other hand, along the lower sur- 

The pressure plot corresponding t o  the t h i r d  p h o t o  of 
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process produces the maximum instantaneous pressure a t  t h a t  1 ocation. 

The lack of wave-like motion along the upper surface of the edge 

can be attributed t o  the major share of incident vortex passing 

bel ow the edge. 

Figure 46, for the case of 5/2T=0.1, shows a similar result .  

Along the upper surface, the pressure amplitude i s  again very small 

and relatively constant. 

propagating pressure wave as a function of time t can be seen. 

par ing  the plot of  the two offset  cases, however, one can see t h a t  

the zero offset  case seems t o  produce pressure waves of shorter 

wavelength evidenced by more cycles covered along the same distance. 

This i s  not  evident i n  the corresponding photos. However, further down- 

stream the positive offset  case shows a fas te r  advancing primary- 

secondary vortex p a i r  relative t o  the zero offset  case, reflecting the 

longer wavelength of the vortices. 

Along the lower surface the same basic 

Com- 

The case o f  negative offset  ~/2T=-0.4 produces a similar result  

except t h a t  the wavelength i s  significantly longer t h a n  f o r  the pre- 

vious two cases. 

surface i s  relatively small and  constant. Again no wave-like motion 

can be seen since the phase remains relatively constant along the 

lower surface. 

tions approximately corresponding t o  the centers of the incident 

vortices. One can also see that only about  two cycles ( o r  4 ~ )  i s  

covered along the upper surface. The corresponding pictures a l so  

This time, the pressure amplitude along the lower 

The upper surface plot shows the peak pressure loca- 
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show the significantly longer wavelength between the vortices. In 

a l l  offset  cases, however, the frequency f remains relatively con- 

s tan t ;  only the wavelength changes. 

t h r o u g h  62 show the instantaneous pressure f ie lds  and corresponding 

three types of visualization o f  the flow f i e ld  a t  three different 

offsets.  

The remaining Figures 48 
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D I S C U S S I O N  AND CONCLUSIONS 

Overall, the mixing layer generated vortex, interacting with 

ei ther  the 5:l e l l ip t ica l  leading-edge or the finite-length a i r fo i l ,  

produces a different result from the interaction process involving 

a t h i n  leading-edge. 

cal leading-edge and the a i r fo i l  leads t o  the distortion o f  the pri- 

mary vortex and  subsequent formation of a secondary vortex for 

the range of offset cases examined except for  the negative offset 

case of [/2T=-0.4. 

from t h a t  of the thin leading-edge case. 

edge case where there i s  "sweeping" of f l m  about  the t i p  leading 

The interaction process for  b o t h  the e l l i p t i -  

The secondary vortex formation process differs 

Unlike the thin leading- 

t o  induction 

quent format 

leadi ng-edge 

the sweeping 

mary vortex 

of f luid from t o p  surface t o  bottom surface and subse- 

on of a secondary vortex, the case of the more "blunt" 

vortex interaction produces a secondary vortex without 

of the flow about the t ip  r e g  ons. The impinging pri-  

nduces a strong instantaneous adverse pressure gradient 

along the lower surface of the edge; this leads t o  separation of 

the wall viscous layer and subsequent formation of a secondary vor- 

tex of opposite sense. 

The actual distortion process of the incident vortex, on the 

other hand ,  i s  similar for the two cases for  certain edge thickness 

scales. 

%pl i t t ing l '  of the primary vortex t o  upper and lower portions o f  

I n  the t h i n  leading-edge case, one can clearly see the 
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the edge surface. For the 5:l e l l i p t i ca l  leading-edge, i f  the edge 

scale thickness i s  suff ic ient ly  small compared t o  the incident vor- 

tex scale (i.e. ~ T / u u  - < le4), then a similar severing of the inti- 

d e n t  primary vortex occurs. 

becomes large w i t h  respect t o  the scale of incoming vort ic i ty  f i e ld ,  

then the major portion of the incident vortex passes below the leading- 

edge surface. 

"image ef fec t"  upstream of the t i p  i n  such a way tha t  the incident 

vortex begins to  dive early as i t  approaches the t i p  of the leading- 

edge; this e f fec t  was not noticeable f o r  the thinner leading-edges. 

Hence the edge thickness scale strongly affects the trajectory and 

distortion o f  the incident primary vortex d u r i n g  and  a f t e r  the 

impingement process. 

the other hand,  does not seem t o  be significantly affected by the 

various thicknesses of the leading-edges. 

process of the secondary vortex remains relatively constant fo r  a l l  

the edge thickness scales examined. 

However, i f  the edge scale thickness 

The thicker edge also produces a stronger vortex 

The generation of the secondary vortex, on 

The scale and  the roll-up 

In contrast, the transverse offset  of the edge w i t h  respect t o  

the center of the incident vortex has a strong effect  on the genera- 

tion of the secondary vortex. 

almost a l l  of the incident vortex dives below the surface and produces 

a strong secondary vortex along the lower surface of  the edge. 

the positive offset  case (5/2T=0.1), a l l  of the incident vortex 

dives below the surface and the impingement point moves downstream 

For the zero of fse t  case (c/ZT=O), 

For 
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of the t i p  of the edge. 

the roll-up process i s  completed. In the case of 5/2T=-0.4, a l l  of 

the (marked) incident vortex passes above the plate relatively undis- 

torted and  moves away from the surface downstream of the edge: 

apparent secondary vortex generation can be detected from the visual- 

ization. 

physics of the flow discussed above. For b o t h  cases of 5/2T=0 and  

5/2T=0.1, along the upper surface where no significant portions of 

the primary vortex pass by, the phase remains relatively constant. 

The secondary vortex breaks down before 

no 

The pressure amplitude and  phase da ta  seem t o  ref lect  the 

The instantaneous pressure d a t a  also shows this lack of wave- 

l ike motion along the upper surface of the edge. Along the lower sur- 

face, however, there i s  a definite increase in the phase in downstream 

direction and the corresponding instantaneous pressure plot exhibits 

a travelling wave-like motion as a function of time. 

amplitude along the t o p  and bottom edge surfaces for the two offset  

cases are of the same order b u t  distributed differently; the peak 

amplitude occurs a t  x/T=O.O for the zero offset  case and  a t  the X/T= 

0.25 for the positive offset case. The amplitude values downstream of 

the leading-edge i s  also greater for  the positive offset  case compared 

t o  the negative offset  case. 

shows a similar characterist ic as the two previous cases, b u t  i n  

reverse; the upper surface shows an ever-increasing phase and corre- 

sponding wave-li ke motion of the instantaneous pressure as a function 

of time, whereas the lower surface shows a constant phase and  pressure 

The rms pressure 

The case of  negative offset  (5/2T=-0.4) 

- 48- 



amplitude. Hence, one can conclude that  the unsteady pressure 

f ie lds  exhibit  wave-like motion i n  agreement w i t h  the convection of 

the vortex ins tab i l i ty  and lack of such connection leads t o  nearly 

constant streamwise phase o f  the  pressure f i e ld  w h i c h  provides large 

local loading there. 
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Proposed Investigation 

In the previous investigation a single row of concentrated vor- 

In many prac- t ices interacting w i t h  the leading-edge was examined. 

t i ca l  si tuations,  however, the impingement process involves more t h a n  

one row of  vortices. For the case o f  two rows of vortices of oppo- 

s i t e  sense, i t  would be interesting t o  see how the impingement pro- 

cess of  one row affects the other row, o r  how the simultaneous impinge- 

ment of  the two rows of vortices a l te rs  the interaction process. 

This can be done by using a t h i n  plate upstream of the leading-edge 

t o  generate a von Karman vortex s t reet .  

two rows of vortices of opposite sense fo r  the impingement process. 

The various edge offsets would probably have a drastic effect  on the 

distortion or subsequent agglomeration of the two rows of vortices 

following the impingement upon the edge. 

pressure and  phase measurements can be carried o u t  t o  understand 

the detai 1s of the interaction mechanisms. The shedding frequency 

of the von Karman vortex s t r ee t  can be changed by increasing or decreas- 

ing the flow speed as well as by changing the thickness of the plate 

from w h i c h  shedding occurs. 

t o  see the effect  of different Reynolds numbers and frequencies o f  vo r -  

tex s t ree ts  on the interaction process. 

t o  observe the effect  of a l l  these parametric variations on the 

subharmonic and  harmonic components of the pressure f ie ld .  Proper 

f i l t e r ing ,  i n  conjunction w i t h  cross spectral analysis, can allow char- 

acterization o f  t b e  pressure amplitude and  phase of the subharmonic 

and  harmonic components . 

This set-up will produce 

Both the visualization and 

Using th i s  method, one would be able 

I t  would also be interesting 
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Figure 13. Overview of  hydrogen bubble time-line 
visualization set-up. 
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F i g u r e  14.  Various hydrogen bubble 1 i n e  v isua l  i t a t  ion technique. 
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Figure 16. Vortex incident upon a 5:l elliptical leading-edge. (5/2T = 0) 
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Figure 17. Details of primary vortex-leading edge interaction and 
subsequent secondary vortex shedding. 
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1 nc tden t 

F igu re  19. Notched hydrogen bubble w i r e  i s  used f o r  the v i s u a l i z a t i o n  o f  
same set-up as i n  Figures 16 and 18. (5/2T = 0) 
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F igu re  20. Vortex i n c i d e n t  upon a NACA 0012 a i r f o i l  (0' angle of a t t a c k ) .  
(5/2T = 0) -70- 
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F i g u r e  21. F i n e  t i m e - l i n e  v i s u a l i z a t i o n  o f  d i s t o r t e d  pr imary  v o r t e x  on t h e  
upper sur face o f  t h e  a i r f o i l  (0' angle o f  a t t a c k ) .  (5/2T = 0) 
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F igu re  22. Vortex i n c i d e n t  upon an a i r f o i l  w i t h  -10 0 ang le  o f  a t t a c k .  ( 5 / 2 T = 0 )  
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F igu re  25. Vor tex  i n c i d e n t  upon an a i r f o i l  w i t h  -5' ang le  o f  a t tack .  ( ( / 2T=0)  
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Figure 25. Vortex incident upon an airfoil with -5' angle o f  attack. (5/2T=0) 
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0 Figure 26. Vortex incident upon an airfoil with 10 angle of attack. ( 5 / 2 T = 0 )  
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Figure 27. Effect of edge thickness on the interaction; 
vortex incident upon a 5:l elliptical leading- 
edge. (2T/Aw = 0.7; 2T/BR = 3 . 3 )  
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Figure 28. Effect of edge thickness on the interaction; 
vortex incident upon a 5:l elliptical leading- 
edge. (2T/Aw= 1.4; 2T/eR-6. 7) 
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Figure 29. Effect of edge thickness on the interaction; 
vortex incident upon a 5 : l  elliptical leading- 
edge. (2T/Aw=4.2; 2T/0~ =20.1) 

- 79- 



Figure 30. E f f e c t  of edge thickness on the  i n t e r a c t i o n ;  com- 
parison o f  d i f f e r e n t  thickness 5:1 e l  1 i p t i c a l  
1 ead i ng-edges. 
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Figure 31. Vortex interaction with 5:l elliptical leading-edge; 
block of hydrogen bubble lines generated upstream o f  
the leading-edge. (5/2T = 0) 
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Figure 32. Vortex interaction with 5:l elliptical leading-edge; 
finely pulsed hydrogen bubble lines generated at the 
t i p  o f  the leading-edge. (5 /2T = 0) 
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Figure 33. Vortex interaction 
continuous hydrogen bubble lines generated at the tip 
of the leading-edge. (5 /2T = 0) 
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Figure 34. Vortex interaction with 5:1 elliptical leading-edge; 
block of  hydrogen bubble lines generation upstream 
of the leading-edge. (5/2T = 0.0) 
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Figure 35. Vortex interaction with 5:l elliptical leading-edge; 
finely pulsed hydrogen bubble lines generated at the 
t i p  of the leading-edge. ( U 2 T  = 0.1) 
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Figure 36. Vortex interaction with 5:1 elliptical leading-edge; 
continuous hydrogen bubble lines generated at the 
tip o f  the leading-edge. (5/2T = 0.1) 
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Figure 39. Vortex i n t e r a c t i o n  w i t h  5 : l  e l l i p t i c a l  leading-edge; 
continuous hydrogen bubble l i n e s  generated a t  the  t i p  
of  the leading-edge. ( U 2 T  = -0.4) 
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Figure 40. E f f e c t  o f  edge-vortex o f f s e t  on the i n t e r a c t i o n ;  
comparison o f  th ree  d i f f e r e n t  o f f s e t  cases (block 
o f  hydrogen bubble l i n e s  generated upstream o f  the 
1 ead i ng-edge) . 
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Figure 4 1 .  E f f e c t  of edge-vortex o f f s e t  on the  i n t e r a c t i o n ;  
comparison o f  th ree  d i f f e r e n t  o f f s e t  cases ( f i n e l y  
pulsed hydrogen bubble l i n e s  generated a t  the t i p  
o f  the 1 ead i ng-edge) . 
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Figure 42. E f f e c t  o f  edge-vortex o f f s e t  on the i n t e r a c t i o n ;  
comparison o f  th ree  d i f f e r e n t  o f f s e t  cases (continuous 
hydrogen bubble l i n e s  generated a t  the t i p  of the 
leading-edge. 
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Figure  45. Instantaneous pressure f i e l d s  and corresponding vortex- 
edge i n t e r a c t i o n  mechanisms f o r  var ious locat ions of  vor- 
t e x  r e l a t i v e  t o  leading-edge; i . e .  f o r  d i f f e r e n t  times 
(t=O, 1/5 T, 2/5 T,  3 /5  T, 4 / 5  T; 5/2T=0). 
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Figure  46. Instantaneous pressure f i e l d s  and corresponding vortex- 
edge i n t e r a c t i o n  mechanisms f o r  various locat ions  of vor- 
tex  r e l a t i v e  t o  leading-edge; i .e .  f o r  d i f f e r e n t  times 
( P O ,  115 T, 2/5 T, 3/5 T, 4/5 T; 5/2T=O.l). 
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Figure 47. Instantaneous pressure fields and corresponding vortex- 
edge interaction mechanisms for various locations of vor- 
tex relative to leading-edge; i.e. f o r  different times 
( P O ,  1/5 T, 2/5 T, 3/5  T, 4/5 T; 5/2T=-0.4). 
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APPENDIX: PRELIMINARY INVESTIGATION OF VORTEX STREET - ELLIPTICAL 

EDGE INTERACTION 

Recent experiments have been carried ou t  t o  investigate the 

mechanisms of vortex street-ell iptical edge interaction (Gursul 

1988)*. 

the details of this  class of interactions. Detailed measurements 

of the surface pressure, as well as of the velocity and vorticity 

fields,  are forthcoming and will be reported by Gursul (1988). 

Figures A-1 through A-7- shown i n  the following describe 

* Gursul , I .  1988 Ph.D. Dissertation, Department of Mechanical 
Engineering and Mechanics, Lehigh University, Bethlehem, 
Pennsyl vani a , 1801 5 
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Figure A-4: 
Direct comparison of effect of offset on vortex street distortion. 
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Figure A-6:  
Time sequence o f  vortex s t r e e t -  
edge i n t e r a c t i o n .  
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Figure A-7: -- 
Time sequence o f  vortex s t r e e t -  
edge i n t e r a c t i o n .  
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